If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+48x+27=0
a = 8; b = 48; c = +27;
Δ = b2-4ac
Δ = 482-4·8·27
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{10}}{2*8}=\frac{-48-12\sqrt{10}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{10}}{2*8}=\frac{-48+12\sqrt{10}}{16} $
| x/2+5/6+1/3=1 | | 2/7*s=14 | | -42+x=-42 | | 8x^2-48x+27=0 | | 3/8/f=15 | | 3/8*15=f | | 3/8*f=15 | | z*8/5=-104 | | 8x+2+9x-24=0 | | x=89. | | z*8/5=104 | | 8-2(2a-5)=2(a+3)-3a | | x*49/48=7/12 | | 1.055^x=2 | | 4x-16=-46+7x | | 3x{x-5}=9 | | 3y+y+36=7y+40+5y | | 2y+y+36=7y+40+5y | | 3(3x-4)=15.45 | | 9m=5=95 | | 23g+19=8 | | 23g-19=8 | | 94=4+8.5x | | 4=11y | | 6m=5=17 | | 7x+5=11x-4 | | 5x+2=−88 | | 3^x/4=444 | | 4x-2x+3=9-4x | | 10x+5=9x=3 | | 55x-1=40 | | 30-m=13 |